Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 419, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199996

RESUMO

Bioisosteric design has become an essential approach in the development of drug molecules. Recent advancements in synthetic methodologies have enabled the rapid adoption of this strategy into drug discovery programs. Consequently, conceptionally innovative practices would be appreciated by the medicinal chemistry community. Here we report an expeditous synthetic method for synthesizing aryl difluoromethyl bicyclopentane (ADB) as a bioisostere of the benzophenone core. This approach involves the merger of light-driven C-F bond activation and strain-release chemistry under the catalysis of a newly designed N-anionic-based organic photocatalyst. This defluorinative coupling methodology enables the direct conversion of a wide variety of commercially available trifluoromethylaromatic C-F bonds (more than 70 examples) into the corresponding difluoromethyl bicyclo[1.1.1]pentanes (BCP) arenes/difluoromethyl BCP boronates in a single step. The strategy can also be applied to [3.1.1]and [4.1.1]propellane systems, providing access to analogues with different geometries. Moreover, we have successfully used this protocol to rapidly prepare ADB-substituted analogues of the bioactive molecule Adiporon. Biological testing has shown that the ADB scaffold has the potential to enhance the pharmacological properties of benzophenone-type drug candidates.

2.
Adv Sci (Weinh) ; 11(13): e2306088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243642

RESUMO

The unprecedented demand for variants diagnosis in response to the COVID-19 epidemic has brought the spotlight onto rapid and accurate detection assays for single nucleotide polymorphisms (SNPs) at multiple locations. However, it is still challenging to ensure simplicity, affordability, and compatibility with multiplexing. Here, a novel technique is presented that combines peptide nucleic acid (PNA) clamps and near-infrared (NIR)-driven digital polymerase chain reaction (dPCR) to identify the Omicron and Delta variants. This is achieved by simultaneously identifying highly conserved mutated signatures at codons 19, 614, and 655 of the spike protein gene. By microfluidically introducing graphene-oxide-nanocomposite into the assembled gelatin microcarriers, they achieved a rapid temperature ramping-up rate and switchable gel-to-sol phase transformation synchronized with PCR activation under NIR irradiation. Two sets of duplex PCR reactions, each classifying respective PNA probes, are emulsified in parallel and illuminated together using a homemade vacuum-based droplet generation device and a programmable NIR control module. This allowed for selective amplification of mutant sequences due to single-base-pair mismatch with PNA blockers. Sequence-recognized bioreactions and fluorescent-color scoring enabled quick identification of variants. This technique achieved a detection limit of 5,100 copies and a 5-fold quantitative resolution, which is promising to unfold minor differences and dynamic changes.


Assuntos
COVID-19 , Ácidos Nucleicos Peptídicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Ácidos Nucleicos Peptídicos/genética , Corantes , Teste para COVID-19
3.
Adv Mater ; 36(3): e2305322, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37543049

RESUMO

Photothermal superhydrophobic surfaces are potential to become ideal anti-/deicing surfaces due to their rapid water removal, icing delay, and photothermal deicing performance. Here, a robust photothermal icephobic surface with mechanical durability is shown that is integrated with a microspine array inspired by honeycomb and cactus thorn (i.e., MAHC), which is developed by a laser-layered microfabrication strategy. The maximum stress on the microspine of the MAHC is reduced by ≈2/3, due to the protection of the bionic honeycomb structure. Even after 200 linear abrasions by a steel blade, the MAHC remains superior water repellency with a water contact angle of 150.7° and roll-off angles of 10.3°, stable icing delay time (578.2 s), and rapidly photothermal deicing capabilities (401 s). As the MAHC is fabricated on a curvature surface such as a copper alloy transmission line for an overhead high-speed rail, a stable photothermal anti-/deicing in a low-temperature environment still can be achieved effectively. The freezing rain covering the functional transmission line completely slides off within 758 s under one sun illumination. This studying offers insight into the design of novel materials with stable anti-icing/icephobic structures, which would be extended into some applied realms, for example, transportation fields or power systems in cold or low-temperature climates.

4.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906989

RESUMO

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis , Microfluídica/métodos , Testes de Sensibilidade Microbiana , Proteínas , Técnicas Analíticas Microfluídicas/métodos , Ensaios de Triagem em Larga Escala/métodos
5.
J Neural Eng ; 15(5): 056010, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29794323

RESUMO

OBJECTIVE: Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE), which is a piezoelectric, biocompatible polymer, holds promise as a scaffold in combination with Schwann cells (SCs) for spinal cord repair. Piezoelectric materials can generate electrical activity in response to mechanical deformation, which could potentially stimulate spinal cord axon regeneration. Our goal in this study was to investigate PVDF-TrFE scaffolds consisting of aligned fibers in supporting SC growth and SC-supported neurite extension and myelination in vitro. APPROACH: Aligned fibers of PVDF-TrFE were fabricated using the electrospinning technique. SCs and dorsal root ganglion (DRG) explants were co-cultured to evaluate SC-supported neurite extension and myelination on PVDF-TrFE scaffolds. MAIN RESULTS: PVDF-TrFE scaffolds supported SC growth and neurite extension, which was further enhanced by coating the scaffolds with Matrigel. SCs were oriented and neurites extended along the length of the aligned fibers. SCs in co-culture with DRGs on PVDF-TrFE scaffolds promoted longer neurite extension as compared to scaffolds without SCs. In addition to promoting neurite extension, SCs also formed myelin around DRG neurites on PVDF-TrFE scaffolds. SIGNIFICANCE: This study demonstrated PVDF-TrFE scaffolds containing aligned fibers supported SC-neurite extension and myelination. The combination of SCs and PVDF-TrFE scaffolds may be a promising tissue engineering strategy for spinal cord repair.


Assuntos
Hidrocarbonetos Fluorados/química , Bainha de Mielina/fisiologia , Neuritos/fisiologia , Polivinil/química , Células de Schwann/fisiologia , Alicerces Teciduais , Animais , Técnicas de Cocultura , Colágeno , Combinação de Medicamentos , Gânglios Espinais/citologia , Laminina , Proteoglicanas , Ratos , Ratos Sprague-Dawley
6.
Glia ; 64(12): 2247-2262, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658374

RESUMO

Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments. Axons of superior cervical ganglion (SCG) neurons, which do not normally support the formation of myelin segments by Schwann cells, express higher levels of Cadm3 compared to DRG neurons. Knocking down Cadm3 in SCG neurons promotes myelination. Finally, the extracellular domain of Cadm3 interferes in a dose-dependent manner with the activation of ErbB3 and of the pro-myelinating PI3K/Akt pathway, but does not interfere with the activation of the Mek/Erk1/2 pathway. While not in direct contradiction, these in vitro results shed lights on the apparent lack of phenotype that was reported from in vivo studies of Cadm3-/- mice. Our results suggest that Cadm3 may act as a negative regulator of PNS myelination, potentially through the selective regulation of the signaling cascades activated in Schwann cells by axonal contact, and in particular by type III Nrg-1. Further analyses of peripheral nerves in the Cadm-/- mice will be needed to determine the exact role of axonal Cadm3 in PNS myelination. GLIA 2016;64:2247-2262.


Assuntos
Moléculas de Adesão Celular/deficiência , Regulação da Expressão Gênica/genética , Imunoglobulinas/deficiência , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células de Schwann/fisiologia , Transdução de Sinais/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Moléculas de Adesão Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , Gânglios Espinais/citologia , Regulação da Expressão Gênica/fisiologia , Imunoglobulinas/genética , Imunoprecipitação , Proteína Básica da Mielina/metabolismo , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
PLoS One ; 7(12): e51370, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236488

RESUMO

To maintain the antibody activity and enhance performance of array-based immunoassays, protein G was used to allow a shorter duration of immunoglobulin G immobilization at 4 °C, with the antibody placed in the appropriate orientation. The multiplexed detection of six pain-related message molecules (PRMMs) was used as examples for the development of array-based immunoassays: substance P, calcitonin gene-related peptide, nerve growth factor, brain-derived neurotrophic factor, tumor necrosis factor-α, and ß-endorphin. Protein G- and non-protein G-coated slides were tested. Compared to non-protein G immunoassays, protein G shortened the antibody immobilization time at 4 °C from overnight to 2 hours. Only protein G-facilitated immunoassays succeeded in simultaneously detecting all six PRMMs with high specificity. Dose-response curves showed that the limits of detection of the protein G-multiplexed immunoassays for the PRMMs was approximately 164, 167, 120, 60, 80, and 92 pg/ml, respectively. Thus, protein G effectively shortens the duration of antibody immobilization at 4 °C, allowing the use of sensitive array-based immunoassays for the simultaneous detection of PRMMs.


Assuntos
Anticorpos Imobilizados , Proteínas de Bactérias , Imunoensaio/métodos , Imunoglobulina G , Proteínas de Bactérias/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Peptídeo Relacionado com Gene de Calcitonina , Relação Dose-Resposta a Droga , Fator de Crescimento Neural , Substância P , Temperatura , Fator de Necrose Tumoral alfa , beta-Endorfina
8.
Mol Cell Proteomics ; 11(11): 1177-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843995

RESUMO

Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 µm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid-protein interactions in high-throughput studies.


Assuntos
Metabolismo dos Lipídeos , Lipossomos/metabolismo , Nanopartículas/química , Análise Serial de Proteínas/métodos , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromatografia de Afinidade , Biologia Computacional , Citoesqueleto/metabolismo , Fluorescência , GTP Fosfo-Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Transporte Proteico , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...